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Introduction

In practice, we have a LIBOR curve and several discount curves in a
single currency. The below table shows market rates on Oct 3, 2015.
Roughly speaking, yen IRS rates corresponds yen LIBOR curve, IRS-
OIS spreads corresponds to yen LIBOR-OIS curve, and USD/JPY cross
currency basis swap rates corresponds to the spread curve of LIBOR
and discount rates for the yen cash�ows collateralized in USD cash.



yen IRS(%) IRS-OIS spread(bp) usd/yen basis(bp)
1y 0.115 2.625 -50.75
2y 0.106 3 -60.5
3y 0.116 3.375 -69
5y 0.191 4.25 -80
7y 0.301 5.517 -82
10y 0.493 7.4 -75.5
20y 1.116 9.665 -53.875
30y 1.341 10.55 -44.125

We need term structure models where LIBOR curve is the main interest
rate driver and LIBOR discount spread curves are additional stochastic
drivers.



Compared with discount curves, LIBOR curve is "�ctious" because
LIBOR bond prices are not observable. Therefore it has been common
to apply term-structure modeling to discount curve(e.g., OIS curve with
constant LIBOR-discount spreads).

In this presentaton, we apply term-structure modeling to LIBOR curve
directly and to additional several LIBOR-discount spread curves.



Dividend,numeraire and risk-neutral measure

X(t): time-t FX spot rate of one unit of foreign currency in domestic
currency at time t

X(t;T ): time-t FX forward rate settled at time T

r(t): domestic ON rate at time t, r�(t): foreign ON rate

Derivatives with payo¤ f(ST ) collateralized by domestc cash at time t:



V (t;T ) = E
Q
t

"
e�
R T
t x(u)duf(ST ) +

Z T
t
e�
R T
t x(u)du (x(u)� r(u))V (u;T )du

#

= E
Q
t

�
e�
R T
t r(u)duf(ST )

�
Nummeraire can be anything:

Bx(t) = e
R t
0 x(u)du

Fujii, Shimada and Takahashi(2009) considered the case where x is
"risk-free rate" while Piterbarg(2010) considered it where x is the
bank�s funding rate.



Ignoring the "dividend" cash�ows, we can think of the e¤ective nu-
meraire as

Br(t) = e
R t
0 r(u)du



Derivatives with payo¤ f(ST ) collateralized by foreign cash at time t

V (t;T ) = E
Q
t

"
e�
R T
t x(u)duf(ST ) +

Z T
t
e�
R T
t x(u) (x(u)� r(u))V (u;T )du

#

= E
Q
t

�
e�
R T
t r(u)duf(ST )

�

where r(t) satis�es

X(t) (1 + r(t)dt) = X(t; t+ dt) (1 + r�(t)dt)

Ignoring the "dividend" cash�ows, the e¤ective numeraire is

Br(t) = e
R t
0 r(u)du



The above argument shows that the risk-neutral measure stays the
same even though the e¤ective numeraires are di¤erent.



Multiple curves

OIS curve (domestic cash-collateralized discounting curve) at time t:

D(t;T ) = E
Q
t

�
e�
R T
t r(u)du

�
= e�

R T
t f(t;u)du; 8T � t

LIBOR curve at time t:

fD(t;T ) = EQt �e�R Tt er(u)du� = e�R Tt ef(t;u)du; 8T � t
Foreign cash-collateralized discounting curve at time t:

D(t;T ) = E
Q
t

�
e�
R T
t r(u)du

�
= e�

R T
t f(t;u)du; 8T � t



Funding curve at time t:

DF (t;T ) = E
Q
t

�
e�
R T
t r

F (u)du
�
= e�

R T
t f

F (t;u)du; 8T � t



Spread curve (OIS-curve based)

LIBOR-OIS spread: De�ne spot and forward LIBOR-OIS spreads as

s(t) = er(t)� r(t)
s(t;T ) = ef(t;T )� f(t;T )

De�ne LIBOR-OIS spread DFs as

Ds(t;T ) �
fD(t;T )
D(t;T )

then

Ds(t;T ) = E
F(T)
t

�
e�
R T
t s(u)du

�
= e�

R T
t s(t;u)du



where the OIS (riskless) T -forward measure F(T) is characterized from
Q as

dF(T)

dQ

�����
t

=
D(t;T )

e
R t
0r(u)duD(0;T )

; 0 � t � T:



Spread curve (Libor-curve based)

OIS curve also can be written as:

D(t;T ) = E
Q
t

�
e�
R T
t (er(u)�s(u))du�

= fD(t;T )EeF(T)t

�
e
R T
t s(u)du

�
then another representation of LIBOR-OIS curve is:

Ds(t;T )
�1 = E

eF(T)
t

�
e
R T
t s(u)du

�
= e

R T
t s(t;u)du

We introduced another forward measure eF(T) whose numeraire is LI-
BOR (risky) discount bond fD(�;T ). The LIBOR (risky) T -forward mea-



sure eF(T) is characterized from Q as

deF(T)
dQ

�����
t

=
e�
R t
0s(u)dufD(t;T )

e
R t
0r(u)dufD(0;T ) ; 0 � t � T:

Note that e�
R t
0s(u)du is needed for the density to become Q-martingale.

This additional term is explained by "foreign-currency analogy".



Foreign-currency analogy

Bianchetti(2009) originally introduced "foreign-currency analogy" to
resolve the double rate system in one currency. Let Qd denote the
domestic risk neutral measure and Qf denote the foreign risk neutral
measure.

D(t;T ) = E
Qd
t

�
e�
R T
t r(u)du

�
fD(t;T ) = E

Qf
t

�
e�
R T
t (r(u)+s(u))du

�
X(t;T )D(t;T ) = X(t)fD(t;T )

where X(t) is the time-t "spot FX rate" and X(t;T ) is the "T-matured



forward FX rate". Foreign discount bond can also be written as:

fD(t;T ) = 1

X(t)
E
Qd
t

�
e�
R T
t r(u)duX(T )

�

Comparing this with LIBOR-OIS spread representations, we identify
that Qd = Qf and

X(t) = e�
R t
0s(u)du

X(t;T ) = Ds(t;T )e
�
R t
0s(u)du = E

F(T)
t

�
e�
R T
0 s(u)du

�

Indeed, since "spot FX rate" is �nite variation process, there should be
no di¤erence between Qd and Qf .



In our opinion, foreign-currency analogy is still important. Within this
framwork, we can interpret LIBOR forward measure eF(T) as "foreign"
forward measure.

Kijima, Tanaka and Wong (2009): They change measures from Qf to
Qd using "market price of risk" in the foreign bond formula, resulting
in the derivatives pricing formulas dependent on "market price of risk".

Kenyon (2010): "Spot FX rate" has a volatility. Maybe this should be
a "forward FX rate"?



OIS-curve based model

For simplicity, we consider 2 scaler Brownian motions,Wr(t) andWs(t),which
drives OIS curve and LIBOR-OIS spread curve respectively.

Ito�s lemma gives (spread) discount bond dynamics

dD(t;T )

D(t;T )
= r(t)dt� br(t;T )dWQ

r (t)

dDs(t;T )

Ds(t;T )
= s(t)dt� bs(t;T )dWF(T)

s (t)



where bond volatility b(t;T ) in general is stochastic and linked to the
forward rate (spread) volatilities as

bi(t;T ) = �i(t;T )
Z T
t
�i(u;T )du; i = r; s

We allow correlation between discount curve and spread curve;

dWr(t)dWs(t) = �r;s(t)dt

Since ef(t;T ) is eF (T)-martingale,

d ef(t;T ) = df(t;T ) + ds(t;T )

= �r(t;T )dW
eF(T)
r + �s(t;T )dW

eF(T)
s



On the other hand, since f(t;T ) is F (T )-martingale,

d ef(t;T ) = �r(t;T )dWF(T)
r + ds(t;T )

Thus,

ds(t;T ) = (�r(t;T )bs(t;T ) + �s(t;T )br(t;T )) �r;s(t)

+�s(t;T )bs(t;T )dt+ �s(t;T )dW
Q
s



LIBOR-curve based model

Alternatively, we model LIBOR curve directly as:

dfD(t;T )fD(t;T ) = er(t)dt� ber(t;T )dWQer (t)
dDs(t;T )�1

Ds(t;T )�1
= �s(t)dt+ bs(t;T )dW

eF(T)
s (t)

dWer(t)dWs(t) = �er;s(t)dt
Since f(t;T ) is F(T)-martingale,



df(t;T ) = d ef(t;T )� ds(t;T )
= �er(t;T )dWF(T)er � �s(t;T )dWF(T)

s

On the other hand, since f(t;T ) is F(T)-martingale

df(t;T ) = �er(t;T )dW eF(T)er � ds(t;T )

Thus,

�ds(t;T ) = (�er(t;T )bs(t;T )� �s(t;T )ber(t;T )) �er;s(t)
+�s(t;T )bs(t;T )dt� �s(t;T )dWQ

s



Forward LIBORs under the LIBOR discounting

L(T ;T + �): Spot LIBOR over [T; T + �] at time T

L(T ;T + �) =
1

�

 
1fD(T ;T + �) � 1

!

eL(t;T; T + �): T -maturing forward LIBOR at time t (� T ) under the
LIBOR discounting

eL(t;T; T + �) = E
Q
t

 
e�
R T+�
t er(u)duL(T ;T + �)!
fD(t;T + �)

= E
eF(T+�)
t (L(T ;T; T + �))



which shows eL(t;T; T + �) is a eF(T+ �)-martingale, where eF(T) is the
LIBOR-risky T -forward measure whose numeraire is fD(�;T ):
Then,

eL(t;T; T + �) = 1

�

 fD(t;T )fD(t;T + �) � 1
!
; t � T

In the context of foreign-currency analogy, all these are derived in the
"foreign currency".



Collateralized forward LIBORs

L(t;T; T + �): T -maturing forward LIBOR over [T; T + �] at time t under
the OIS discounting

L(t;T; T + �) =

E
Q
t

 
e�
R T+�
t r(u)duL(T ;T; T + �)

!
D(t;T + �)

= E
F(T+�)
t (L(T ;T; T + �))

which shows L(t;T; T + �) is a F(T+ �)-martingale. In the context
of "foreign-currency analogy", the forward LIBOR is considered as a



"quanto" rate because the LIBOR which is denominated in the foreign
currency is paid in the domestic currency.

De�ne a positive eF(T )-martingale density process Ms such that

dF(T)

deF(T) = Ms(T )

Ms(t) = E
eF(T)
t (Ms(T )) ; t � T

Ms(0) = 1

then

L(t;T; T + �) = E
eF(T+�)
t

 
Ms(T + �)

Ms(t)
L(T ;T; T + �)

!



Changing measures to the LIBOR-risky T -forward measure eF(T + �)
L(t;T; T + �) =

fD(t;T + �)EeF(T+�)t

 
e
R T+�
t s(u)duL(T ;T; T + �)

!
D(t;T + �)

The density process Ms is identi�ed as

Ms(t;T ) ,
Ds(0;T )

Ds(t;T )
e
R t
0s(u)du = Ds(0;T )E

eF(T)
t

�
e
R T
0 s(u)du

�

So Ms is given by

Ms(t;T ) �
dF(T)

deF(T)
�����
t

= exp
�
�1
2

Z t
0
bs(u; T )

2du+
Z t
0
bs(u; T )dW

F(T)
s (u)

�



Hence, we have by Girsanov

dW
eF(T)
i (t) = dW

F(T)
i (t) + �i;s(t)bs(t; T )dt; i = r; s; � � �

Considering M(�; T + �) is a eF(T + �)-martingale, its dynamics can be
written as

dMs(t;T + �)

Ms(t;T + �)
= bs(t; T + �)dW

eF(T+�)
s (t)



OIS-curve based approach

d
�fD(t;T ). fD(t;T + �)�fD(t;T ). fD(t;T + �) = (� � � ) dt+ d

fD(t;T )fD(t;T ) � d
fD(t;T + �)fD(t;T + �)

= (br(t; T + �)� br(t; T )) dW
eF(T+�)
r (t)

+ (bs(t; T + �)� bs(t; T )) dW
eF(T+�)
s (t)

we only have an interest in the drift term of the

d

 
Ms(t;T + �)fD(t;T )fD(t;T + �)

!,
Ms(t;T + �)fD(t;T )fD(t;T + �)



: i.e.,

E
eF(T+�)
t

26664
d

�
Ms(t;T+�) eD(t;T )eD(t;T+�)

�
Ms(t;T+�) eD(t;T )eD(t;T+�)

37775
= (br(t; T + �)� br(t; T )) �r;sbs(t; T + �)dt

+(bs(t; T + �)� bs(t; T )) bs(t; T + �)dt

Thus, the collateralized forward LIBOR can be written as



L(t;T; T + �) = E
eF(T+�)
t

 
Ms(T + �;T + �)

Ms(T ;T + �)
L(T ;T + �)

!

=
1

�
E
eF(T+�)
t

 
Ms(T + �;T + �)

Ms(T ;T + �)

 
1fD(T ;T + �) � 1

!!

=
1

�

 fD(t;T )fD(t;T + �)EeF(T+�)t

"
exp

 Z T
t
k(u; T )du

!#
� 1

!

where

k(t; T ) = (br(t; T + �)� br(t; T )) �r;s(t)bs(t; T + �)
+ (bs(t; T + �)� bs(t; T )) bs(t; T + �)



In other word,

1 + �L(t;T; T + �)

1 + � eL(t;T; T + �) = EeF(T+�)t

"
exp(

Z T
t
k(u; T )du)

#

Thus from this results, we know that only when the LIBOR-OIS spread
is not stochastic, i.e., bs(t;T ) = 0 8t; T; then

L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �) � 1
!

LIBOR-curve based approach



When we use the LIBOR-curve based model,

d
�fD(t;T ). fD(t;T + �)�fD(t;T ). fD(t;T + �) = (� � � ) dt+ d

fD(t;T )fD(t;T ) � d
fD(t;T + �)fD(t;T + �)

= (ber(t; T + �)� ber(t; T )) dW eF(T+�)er (t)

Thus,

L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �)EeF(T+�)t

"
exp

 Z T
t
k0(u; T )du

!#
� 1

!

where
k0(t; T ) = (ber(t; T + �)� ber(t; T )) �er;s(t)bs(t; T + �)



There are 2 cases where the convexity terms disappear. One is when
the LIBOR-OIS spread is not stochastic and the other is when LIBOR
curve is uncorrelated with the spread curve, i.e., �er;s(t) = 0; 8t:
When we use LIBOR-curve based model, it is su¢ cient to assume the
independence between LIBOR curve and spread curve to get rid of
the convexity adjustment terms (or quanto terms in terms of foreign-
currency analogy) from the collateralized forward LIBOR formula.



Initial forward LIBORs

At time 0, we have

L(0;T; T + �) =
1

�

 fD(0;T )fD(0;T + �)EeF(T+�)
"
exp

 Z T
0
k0(u; T )du

!#
� 1

!
By curve stripping, we know the initial forward LIBORs and they can
be parametarized so that

L(0;T; T + �) =
1

�

 fD0(0;T )fD0(0;T + �) � 1
!

holds. Some say that option market is needed to price collateralized
linear trades (e.g., swaps), but it is wrong. We can just interpolate
ffD0(0;T )g _T>0 to price any linear trades statically.



Spread curve of the discount curve in the case of

foreign-cash collateral

OIS-curve based

De�ne spot and forward "collateral currency" spreads as

z(t) = r(t)� r(t)
z(t;T ) = f(t;T )� f(t;T )



De�ne "collateral currency spread" DFs as

Dz(t;T ) �
D(t;T )

D(t;T )

then

Dz(t;T ) = E
F(T)
t

�
e�
R T
t z(u)du

�
= e�

R T
t z(t;u)du

LIBOR-curve based

Alternatively, de�ne the spread from the LIBOR curve:

s(t) = er(t)� r(t)
s(t;T ) = ef(t;T )� f(t;T )



De�ne the LIBOR-discount spread DFs as

Ds(t;T ) �
fD(t;T )
D(t;T )

then LIBOR-discount spread curve is:

Ds(t;T )
�1 = E

eF(T)
t

�
e
R T
t s(u)du

�
= e

R T
t s(t;u)du



Forward LIBORs collateralized by foreign cash

OIS-curve based

The foreign-cash collateralized forward LIBOR L(t;T; T + �) can be cal-
culated as:

L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �) exp
 Z T
t
g(u; T )du

!
� 1

!



where

g(t; T ) = (br(t; T + �)� br(t; T ))
�
�r;s(t)bs(t; T + �)� �r;z(t)bz(t; T + �)

�
+ (bs(t; T + �)� bs(t; T ))

�
bs(t; T + �)� �s;z(t)bz(t; T + �)

�

Using the domestic-cash collateralized forward LIBOR,

1 + �L(t;T; T + �)

1 + �L(t;T; T + �)
= exp

 
�
Z T
t
h(u; T )du

!
where

h(u; T ) = (br(u; T + �)� br(u; T )) �r;z(u)bz(u; T + �)
+ (bs(u; T + �)� bs(u; T )) �s;z(u)bz(u; T + �)



This is the convexity adjustment formula between domestic and foreign-
cash collateralized forward LIBORs. Fujii, Takahashi and Shimada
(2010) assumes that z is not stochastic. Therefore, in this case there
is no convexity adjustment between collateral currencies, that is:

L(t;T; T + �) = L(t;T; T + �)

There might be a �aw in their argument. They argue that

L(t;T; T + �) 6= eL(t;T; T + �)
due to stochastic s. In reality z is more volatile than s.

LIBOR-curve based

We deduce directly from the formula of LIBOR-OIS spread case:



L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �)EeF(T+�)t

"
exp

 Z T
t
g0(u; T )du

!#
� 1

!
where

g0(t; T ) = (ber(t; T + �)� ber(t; T )) �er;s(t)bs(t; T + �)
therefore,

1 + �L(t;T; T + �)

1 + �L(t;T; T + �)

= E
eF(T+�)
t

"
exp

 Z T
t
g0(u; T )du

!#,
E
eF(T+�)
t

"
exp(

Z T
t
k0(u; T )du)

#



In general, there is a convexty adjustment between forward LIBOR
collateralized by di¤erent currencies even at time 0. It is su¢ cient to
assume that �er;s(t) = 0 and �er;s(t) = 0 to have no adjustment, i.e.,

L(t;T; T + �) = L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �) � 1
!



Hull-White Model

We do NOT assume the independence between the LIBOR curve and
LIBOR-discount spread curves. We apply the Hull-White model to the
LIBOR curve and spread curve:

dXer(t) = ��er(t)Xer(t) + �er(t)dWQer (t)
dXs(t) = ��s(t)Xs(t) + �s(t)dWQ

s (t)

dWer(t)dWs(t) = �er;s(t)dt
In the Hull-White model, k0(t; T ) is deterministic function of t and T,
i.e.,



1 + �L(t;T; T + �)

1 + � eL(t;T; T + �) = exp(
Z T
t
k0(u; T )du)

where

k0(t; T ) = (ber(t; T + �)� ber(t; T )) �er;s(t)bs(t; T + �)
= �er(t)�er;s(t)�s(t) (Aer(t; T + �)�Aer(t; T ))As(t; T + �)

Ai(t; T ) =
Z T
t
e�
R u
t �i(v)dvdu; i = er; s

LIBOR Bond reconstitution formula stays the same:

fD(t;T ) = fD(0;T )fD(0; t) exp (�Aer(t; T )Xer(t)�Ber(t; T ))



where

Ber(t; T ) =
Z T
t
Her(t; u)du;

Her(t; T ) =
Z t
0
�er(u; T )ber(u; T )du

=
Z t
0
�er(u)2e� R Tu �i(v)dvA(u; T )du

We also have the reconstitution formula for the collateralized forward
LIBOR.

1 + �L(t;T; T + �) = (1 + �L(0;T; T + �)) exp
�
�
Z t
0
k0(u; T )du

�
� exp [(A(t; T + �)�A(t; T ))X(t) +B(t; T + �)�B(t; T )]



The reconstitution formula for the LIBOR-discount spread:

Ds(t;T )
�1 =

Ds(0; t)

Ds(0;T )
exp (�As(t; T )Xs(t)�Bs(t; T ))

Bs(t; T ) =
Z T
t
Hs(t; u)du

Hs(t; T ) =
Z t
0

h
�er(u;T )bs(u;T )� �s(u;T )ber(u;T )�er;s(u) + �s(u;T )bs(u;T )i dt

Therefore,

D(t;T ) = fD(t;T )Ds(t;T )�1
=

D(0;T )

D(0; t)
exp (�Aer(t; T )Xer(t)�Ber(t; T )) exp (�As(t; T )Xs(t)�Bs(t; T ))



Cheyette Model

In the Cheyette model, the bond volatility b(t;T ) is stochastic

b(t;T ) = �(t)
Z T
t
e�
R u
t �(v)dvdu

due to stochastic �(t).

It is di¢ cult to calculate E
eF(T+�)
t

h
exp

�R T
t k

0(u; T )du
�i
analytically. There-

fore, we restrict the model by the assumption of the indepencence
bwtween the LIBOR curve and LIBOR-discount spread curves, i.e.,
�er;s = 0 and �er;s(t) = 0:



With this assumption, we have:

L(t;T; T + �) = L(t;T; T + �) =
1

�

 fD(t;T )fD(t;T + �) � 1
!

However, the LIBOR-discount spread curves s or s are still stochastic.
The state variables are8>>>>>>>>><>>>>>>>>>:

dXer(t) = (��er(t)Xer(t) + Yer(t)) dt+ �er(t)dWQer (t); Xer(0) = 0
dYer(t) = �

�2er(t)� 2�er(t)Yer(t)� dt; Yer(0) = 0
dXs(t) = (��s(t)Xs(t) + Ys(t)) dt+ �s(t)dWQ

s (t); Xs(0) = 0

dYs(t) =
�
�2s(t)� 2�s(t)Ys(t)

�
dt; Ys(0) = 0

dW
Qer (t)dWQ

s (t) = 0

where �er(t) and �s(t) are stochastic.



The LIBOR bond reconstitution formula stays the same as

fD(t;T ) = fD(0;T )fD(0; t) exp
�
�Aer(t; T )Xer(t)� 12Aer(t; T )2Yer(t)

�

So the forward LIBOR reconstitution foumula becomes:

1 + �L(t;T; T + �) = (1 + �L(0;T; T + �))

� exp
�
(A(t; T + �)�A(t; T ))Xer(t) + 12

�
A(t; T + �)2 �A(t; T )2

�
Yer(t)�

And the the inverse of the spread bond formula is:

Ds(t;T )
�1 =

Ds(0; t)

Ds(0;T )
exp

�
�As(t; T )Xs(t)�

1

2
As(t; T )

2Ys(t)
�



Therefore, the discount bond becomes:

D(t;T ) = fD(t;T ) (Ds(t;T ))�1
=
D(0;T )

D(0; t)
exp

�
�Aer(t; T )Xer(t)� 12Aer(t; T )2Yer(t)

�
� exp

�
�As(t; T )Xs(t)�

1

2
As(t; T )

2Ys(t)
�



LIBOR Market Model

We restrict the model with the assumption of �er;s = 0 and �er;s(t) = 0
We model canonical risky LIBOR rates eLi(t) � eL(t;Ti; Ti+1); i = 1; � � � ; N
as

d eLi(t) = '( eLi(t); t)�i(t)dW eF(Ti+1)
i (t); i = 1; � � � ; N

This modeling is the same as in the LIBOR discounting case. Note that

W
eF(Ti+1)
i (t) =W

F(Ti+1)
i (t) and eLi(t) = Li(t) when �er;s = 0 is assumed.



Fujii, Shimada, and Takahashi(2010) modeled the spreads

B(t;Ti; Ti+1) = L(t;Ti; Ti+1)�O(t;Ti; Ti+1)

as F(Ti+1)-martingale. This spread modeling is basically a la LIBOR
market model. The shortcoming of this approach is that this kind of
modeling has too many model parameters. Since the option market
for the spread does not exist, it is almost impossible to have all those
parameters. Instead of this, we model LIBOR-discount spread as Hull-
White model. We can estimate the model parameters,�s and �s from
historical data.

dXs(t) = ��s(t)Xs(t) + �s(t)dWQ
s (t)

Ds(t;T )
�1 =

Ds(0; t)

Ds(0;T )
exp (�As(t; T )Xs(t)�B(t; T ))



where

As(t; T ) =
Z T
t
e�
R u
t �s(v)dvdu

Bs(t; T ) =
Z T
t
Hs(t; u)du

Hs(t; T ) =
Z t
0
�s(u; T )bs(u; T )du

Therefore, the future discount bond is, with t = T0 and T = Tj+1;

D(t;T ) = fD(t;T )Ds(t;T )�1
=

Ds(0; t)

Ds(0;T )
exp (�As(t; T )Xs(t)�Bs(t; T ))

jY
i=1

1

1 + � eL(t;Ti; Ti+1)



The future time-t PV of LIBOR cash�ow �xed at Tj is

PV (t) = �L(t;Tj; Tj+1)D(t;T )

=
Ds(0; t)

Ds(0;T )
exp (�As(t; T )Xs(t)�B(t; T ))

��L(t;Tj; Tj+1)
jY
i=1

1

1 + �L(t;Ti; Ti+1)



Conclusions

We prefere direct LIBOR curve modeling. To show reasons, we com-
pared OIS-curve based and LIBOR-curve based modeling.

We linked the method of foreign-currency analogy to the stochastic
LIBOR-discount spread.

We calculated forward LIBORs collateralized in both domestic and for-
eign cash.

We showed practical examples of the term structure modeling (Hull
White, Cheyette, and BGM).
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